

NOAA Technical Memorandum NMFS F/NWC-85

Results of the 1983 U.S. and U.S.S.R. Bottom Trawl Surveys in the Eastern Bering Sea

by Wendy A. Hirschberger

August 1985

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information, and has not, received complete formal review, editorial control, or detailed editing.

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

GENERAL DISCLAIMER

This document may be affected by one or more of the following statements

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

RESULTS OF THE 1983 U.S. AND U.S.S.R. BOTTOM TRAWL

SURVEYS IN THE EASTERN BERING SEA

by

Wendy A. Hirschberger

Resource Assessment and Conservation Engineering Division Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way NE BIN C15700 Seattle, Washington **98115**

August 1985

ABSTRACT

Research vessels from the United States and the Soviet Union concurrently sampled the traditional Northwest and Alaska Fisheries Center resource assessment survey grid in the eastern Bering Sea during summer **1982.** The purpose of this report was to determine the feasibility of combining the two data sets to improve the assessment data for groundfish. Methods used on each nation's vessel are described and abundance estimates and biological characteristics derived from the two surveys compared. Conclusions were that the data were generally not compatible and could not be combined.

Preceding page blank

iii

CONTENTS

Page

Introduction	1
Survey Methods	1
Survey Area	1
Fishing Vessels and Gear	2
Sampling Methods and Data Collection	8
Data Analysis	10
Results	13
Environment	13
Species Encountered	14
CPUE Estimates	23
Biomass Estimates	23
Size Composition	29
Discussion	29
References	41

Preceding page blank

INTRODUCTION

The Northwest and Alaska Fisheries Center (NWAFC) has conducted resource assessment surveys in the eastern Bering Sea since 1971. To provide more comprehensive assessments of the Bering Sea groundfish resources, cooperative surveys were begun in 1979 with the Far Seas Fisheries Research Laboratory (Shimizu, Japan). In 1982, a research vessel from the U.S.S.R. joined the U.S. and Japanese vessels to expand the sampling area northwest into the Soviet fishery zone. The cooperative surveys with Japan have been closely coordinated efforts, while the Soviet vessels have worked more independently.

In 1983, the Soviets again sent a research vessel to the eastern Bering Sea. During this second survey, the U.S.S.R. vessel essentially followed the station pattern of the U.S. vessels. Two U.S. observers were aboard the Soviet vessel throughout the survey, collecting catch and biological data which were returned to the NWAFC for analysis. The purpose of this report is to present results of the 1983 Soviet survey effort and compare them with the findings from the 1983 NWAFC survey. This presents an opportunity to determine the compatibility of results from the U.S. and U.S.S.R. surveys and investigate the feasibility of combining this data to provide a better assessment of Bering Sea groundfish resources.

SURVEY METHODS

Survey Area

The 1983 survey area extended from the southern reaches of the eastern Bering Sea continental shelf, north to St. Matthew Island, and from the 200 m isobath to shoreline proximity. A systematic station

pattern, established by the NWAFC in earlier years, was sampled by vessels from both nations. The survey area was divided into seven subareas. Table 1 shows the total area of each. subarea and the actual and planned sampling density. The comparative value of data from subarea 5 is limited because. of the differences in the extent of sampling in 'this area by the U.S. and U.S.S.R. vessels; therefore, the hauls in this subarea were removed from the final analysis.

In all, the U.S. vessels occupied a total of 354 good performance stations and the U.S.S.R. vessel, 348 stations. Stations sampled by U.S. vessels to increase sampling density of crab populations around the Pribilof Islands and St. Matthew Island, were removed from the analysis, creating equal sampling effort throughout the survey area and facilitating the comparison between the Soviet and U.S. survey data. In the final analysis, after stations deeper than 200 m and opportunistic tows were deleted, 310 data collection points were used from the U.S.. survey (Fig. 1) and 315 stations were used for analysis of the U.S.S.R. data (Fig. 2).

Fishing Vessels and Gear

Two vessels were used by the United States to conduct the 1983 Bering Sea survey: the NOAA ship <u>Chapman</u> and the chartered vessel <u>Alaska</u>. The U.S.S.R. used one trawler, the <u>Milogradovo</u>. Vessel characteristics and survey durations are listed in Table 2. The U.S. vessels were both equipped with 83-112 eastern trawls, while the Soviets used one of their commercial fishing trawls. Table 3 summarizes the characteristics of the two trawls. Path widths, while fishing, were from 16.4 to 16.5 m for the two U.S. trawls and 29.5 m for the Soviet trawl: vertical openings were 2.3 m while fishing with the 83-112 trawl and 6.0 m while fishing with

	Area	Proportion of	Planned s dens	ampling sity	Actual U.S densi	5. sampling ity	Actual U.S. de	S.R. sampling ensity
Subarea	(km ²)	total area	No. stns.	km ² /stn.	No. stns.	km ² /stn.	No. stns.	km ² /stn.
1	78,808	0.146	59	1,336	58	1,359	59	1,336
2	60,343	0.112	47	1,284	45	1,341	45	1,341
3	48,168	0.089	46	1,047	32	1,505	33	1,460
4	91,206	0.169	68	1,341	74	1,233	68	1,341
5	97,425	0.180	33	2,952	20	4,871	28	3,479
6	82,405	0.153	57	1,446	58	1,421	57	1,446
7	81,462	0.151	61	1,335	67	1,216	58	1,405
Total survey area	539,817	1.000	371	1,455	354	1,525	348	1,551
			·			•		·····,

Table 1.--Size of subareas used during the 1983 U.S. and U.S.S.R. eastern Bering Sea survey, including planned and actual sampling densities by subarea.

Ĺ

Figure 1.--Stations occupied by U.S. research vessels during the 1983 eastern Bering Sea survey and stratification used for analysis.

Figure 2.--Stations occupied by the U.S.S.R. research vessel during the 1983 eastern Bering Sea survey and stratification used for analysis.

	Overall	Gross		Surve	y period
Vessel	length (m)	tonnage	Horsepower	Start	Finish
R/V <u>Alaska</u>	30.5	193	600	7 June	1 August
R/V Chapman	38.7	427	1,165	8 June	1 August
F/V <u>Milogradovo</u>	82.0	2,654	2,320	15 June	19 August

~

.

Table 2.--Vessels participating in the 1983 U.S. and U.S.S.R. eastern Bering Sea bottom trawl surveys.

Trawl	Headrope	Footrope	Oper	ing		Me	sh siz	es		Accesso	ory gear
type	length (m)	length (m)	vert. (m)	horz. (m)	Wing (mm)	Square (mm)	Belly (mm)	Codend (mm)	Codend liner(mm)	Door (m)	Dandyline length(m)
83-112	25.3	34.1	2.3	16.5	102	102	89	89	32	1.8 x 2.7	54.9
<u>Milogradovo</u> trawl	43.0	60.8	6.0	29.5	100	90	60	30		2.76 (diam.	.) 50.0

.

Table 3.--Bottom trawls used during the 1983 U.S. and U.S.S.R. eastern Bering Sea surveys.

the U.S.S.R. gear. Roller gear, consisting of 40 bobbins each 30 cm in diameter, was used on the <u>Milogradovo</u> trawl; it was apparently used only on rocky or uneven ground and no records were kept to identify these stations. No roller gear was used on either U.S. vessel.

Sampling Methods and Data Collection

Standardized sampling procedures have been followed for many years during NWAFC surveys; a detailed description can be found in Smith and Bakkala (1982) and Wakabayashi et al. (1985). A brief accounting will be included here.

Tow duration was always 30 minutes unless circumstances required that the gear be retrieved sooner. Generally, catches up to 1 metric ton (t) were completely processed while larger catches were subsampled. Catches were sorted by species, and weights and numbers of each species were recorded. For the large catches that were subsampled, the subsample weights and numbers were expanded to the entire catch. A random sample of commercially important fish species was also measured and sexed, and otoliths or scales were removed for later age analysis. All physical data (Including station positions, time, date, surface and bottom water temperatures) and biological data (excluding specimen ages) were entered into shipboard computers.

The sampling procedures on the U.S.S.R. vessel were based on the NWAFC standardized procedures but variations occurred to accommodate larger catches. Samples containing 1 t or less were completely processed,, in keeping with U.S. procedures. When large catches (95-99%) of walleye pollock, <u>Theragra chalcogramma</u>, were encountered, two baskets of pollock were collected from each net area: front, middle, and end. These six baskets were then mixed and the entire sample or a subsample was used to

determine pollock weights and numbers. In these cases, total pollock catch weights were supplied by the factory personnel. Total numbers in the catch were determined by expanding the subsample numbers to the entire catch. All other species were entirely removed from the catch and processed.

Catches on the inner Bering Sea shelf were mainly composed of 4-5 flatfish species. When the amount of fish caught ranged between 1 and 2 t, all of the walleye pollock and Pacific cod, <u>Gadus macrocephalus</u>, were removed from the catch and weights and numbers determined. A subsample of the flatfish was taken, usually a half or quarter of the total catch (visually determined). When the entire catch was in the 2-5 t range, the walleye pollock and Pacific cod were again entirely processed 'but only a subsample of six baskets of the remaining flatfish and other species was processed. The total catches of these latter species were also derived from factory figures. In a few instances, estimates of total catch weight made by the vessel captain were used when the factory was not functioning and therefore unable to supply catch weights. All data were recorded on paper forms and later transferred to the computer at the NWAFC.

While a standard subsampling procedure was used aboard U.S. vessels to obtain random samples for length data collection (Hughes 1976), the methods used on the Soviet vessel were different and may have resulted in more bias. Catch subsampling gear (fish bins, catch splitting nets, large capacity scales) were not available on the U.S.S.R. vessel, as they were on the U.S. vessels, and partitioning of the catch was done visually. At the beginning of the cruise, the catch was dumped on the deck and subsamples were obtained with fish-picks. Later, shovels were used to

collect subsamples. Both of these methods may have introduced bias to the randomness of the sample. Total weights for large catches of pollock and flatfish were derived, from the average weights of frozen fish blocks and the percent of recovery after processing.

In total, 290,422 fish were measured from 20 different species (Table 4). Nearly twice as many were measured on the U.S. vessels (180,070) as on the U.S.S.R. vessel (110,352). Close to 6,000 age structures, from nine species, were collected on U.S. vessels (Table 5); no age data were obtained on the U.S.S.R. survey.

Data Analysis

Detailed descriptions of methods of analysis are given by Bakkala and Smith (1978) and Wakabayashi et al. (1985). In general terms, catches at each station were standardized to a basic sampling unit (kg/ha,ha = hectare or 10,000 m²) trawled. Mean CPUE values by species and strata were then computed from the standardized catch rates. After being weighted by the size of each strata, these were summed to obtain mean catch rates for the overall survey area. Standing stock (biomass) estimates were derived using the "area swept" method of Alverson and Pereyra (1969). Vulnerability of all species to the trawls were assumed to be 1.0. This methodology was used when analyzing the data from both the U.S. and U.S.S.R. surveys.

In estimating the length composition of the sampled populations, the number of individuals within the sex and size classes at each station was derived by expanding the length-frequency subsample to the total catch per standard sampling unit. The individual station data were then expanded to the total strata area and summed over strata to obtain estimates for the total survey area. Age composition was estimated by proportioning

	U.S.	U.S.S.R
Species	survey	survey
Walleye pollock	78,033	57,419
Pacific cod	11,353	5,325
Yellowfin sole	33,924	39,709
Flathead sole	17,284	1,189
Rock sole	16,285	2,610
Alaska plaice	11,624	1,378
Arrowtooth flounder	6,889	· -
Pacific halibut	996	1,675
Greenland turbot	951	-
Bering flounder	-	104
Pacific herring	2,202	471
Sablefish	155	-
Rex sole	82	-
Longhead dab	157	-
Saffron cod	135	225
Sparse toothed lycod	-	82
Shortfin eelpout	-	50
Capelin	· . —	110. `
Chum salmon	-	· 3
Chinook salmon		2
	Total 180,070	110,352

Table 4.--Numbers -of fish-measured during the 1983' U.S. and U.S.S.R. eastern Bering Sea trawl surveys.

Species	Chapman	<u>Alaska</u>	Total
Walleye pollock	1,083	906	1,989
Pacific cod		747	747
Yellowfin sole	411	328	, 739
Greenland turbot	335	<u> </u>	335
Flathead sole	590		590
Rock sole		452	452
Alaska plaice		369	369
Arrowtooth flounder	593		593
Pacific herring	25	129	154
Total	3,037	2,931	5,968

Table 5.--Approximate number of age structures collected on U.S. vessels during the 1983 Bering Sea survey.

the computed population length-frequency distributions to ages using age-length keys that were stratified by sex and size categories. Age data are not presented in this report because comparative data were not taken on the U.S.S.R. vessel.

The U.S. vessels surveyed alternate rows of the grid pattern and these catch rates were compared (Hirschberger, in press). In the analysis of the U.S. data, CPUE values were scaled to the most efficient vessel for those species where significant differences were found between catch rates (Geisser and Eddy 1979), under the assumption that the most efficient vessel for a given species most accurately reflected abundance of that species. Adjustment factors were used for the following species:

Species	V	essel
· · · · · · · · · · · · · · · · · · ·	Alaska	Chapman
Yellowfin sole	1.000	0.771
Pacific halibut	1.000	0.678
Alaska plaice	1.000	0.674
Rock sole	1.000	0.640
Arrowtooth flounder	1.000	0.592
Greenland turbot	1.000	0.581

RESULTS

Environment

Water temperature data were collected at every station by both the U.S. and Soviet vessels. Each nation's vessels occupied given stations on different dates and thus temperatures at the same station varied between the two surveys. Also, recording units were not calibrated against each other. However, the temperature pattern shown by the two surveys was generally the same. During the U.S. survey period (7 June-1 August), bottom water temperatures varied from -1.0° to 9.0°C (Fig. 3). Residual cold water (<2.0°C) from winter cooling was found in the central Bering Sea shelf area. Warmest water was found near the Alaska mainland and temperatures were progressively cooler towards the middle shelf, then slightly warmer near the shelf edge.

The Soviet data (15 June-19 August) showed much the same pattern (Fig. 4) although bottom water temperatures ranged from -1.60 to **12.1^oC.** The same cold water mass was observed in the central shelf area and warm temperatures were recorded along the Alaskan Peninsula as well as the Alaskan mainland.

Surface water temperatures observed from U.S. vessels ranged from 4.5° to 11.6°C (Fig. 5). Most of the surface water over the shelf ranged between $8-9^{\circ}$ C. A warmer cell (10°C) appeared in the Pribilof and St. Matthew Islands regions. A cooler cell ($6-7^{\circ}$ C) extended southeast of Nunivak Island.

Surface water temperatures observed from the U.S.S.R. vessel ranged from 5.6° to **12.8°C** (Fig. 6). Their data showed a pattern of 8-9°Csurface water over the northwest shelf and **10-11°C** water over the southeast shelf and along the Alaska mainland. There appeared to be a colder cell (6-7°C) southwest of Nunivak Island and surface waters were generally colder (7-8°C) along the shelf edge.

Species Encountered

A list of fish species, encountered during each survey, is presented in Table 6. A total of **119** fish species (representing 20 families) were taken: 91 species were recorded on the U.S. vessels and 83 on the Soviet vessel. For purposes of analysis, flathead sole, Hippoglossoides

Figure 4.--Distribution of bottom water temperatures during the 1983 U.S.S.R. eastern Bering Sea survey.

Figure 5.--Distribution of surface water temperatures during the 1983 U.S. eastern Bering Sea survey.

Figure 6.--Distribution of surface water temperatures during the 1983 U.S.S.R. eastern Bering Sea survey.

1.1

Table 6.--List of fish species identified during the **1983** U.S. and U.S.S.R. Bering Sea surveys.

·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		N	ation
Family and species ^a	Common name ^a	U.S.	U.S.S.R.
Squalidae			
Squalus acanthias	Spiny dogfish	х	
Rajidae			
<u>Bathyraja interrupta^b</u>	Bering skate	X	
Bathyraja kincaidi ^b	Sandpaper skate	х	X
Bathyraja rosispinis ^b	Flathead skate	X	
Bathyraja smirnovi ^C	Golden skate ^C	х	
Raja sp.	Skate unid.	х	х
Raja aleutica	Aleutian skate	X	
Raja binoculata	Big skate	х	х
Raja parmifera	Alaska skate	х	Х
Raja stellulata	Starry skate	х	x
Salmonidae			
Oncorhynchus keta	Chum salmon	x	x
Oncorhynchus tshawytscha	Chinook salmon	.==	x
Clupeidae			
<u>Clupea harengus pallasi</u>	Pacific herring	x	x
		:	
Osmeridae			
Usmeridae sp.	Smelt unid.		X
Osmerus mordax	Rainbow smelt	x	X
Mallotus villosus	Capelin	x	X
Thaleichthys pacificus	Eulachon	X	X
Gadidae			
Boreogadus saida	Arctic cod	· X	× X
<u>Eleginus</u> gracilis	Saffron cod	X	X
Gadus macrocephalus	Pacific cod	, X	X
Theragra chalcogramma	Walleye pollock	х	X
Zoarcidae			
Lycodes sp.	Eelpout unid.		х
Lycodes brevipes	Shortfin eelpout	х	x
Lycodes mucosus		х	
Lycodes palearis	Wattled eelpout	X	х
Lycodes raridens ^d	Sparse toothed lycod ^d	x	х
Lycodes turneri	Polar eelpout	х	
Scorpaenidae			
Sebastes aleutianus	Rougheye rockfish	X	x
Sebastes alutus	Pacific ocean perch	x	x
Sebastes borealis	Shortraker rockfish		X
Sebastes ciliatus	Dusky rockfish		x
Sebastes polyspinis	Northern rockfish	X	x

		Nation		
Family and species ^a	Common name ^a	U.S.	U.S.S.R.	
Jexagrammidae				
Hexagrammos SD.	Greenling unid.	х	х	
Hexagrammos decagrammus	Kelp greenling	x		
Hexagrammos lagocephalus	Rock greenling	x		
Hexagrammos octogrammus	Masked greenling		х	
Hexagrammos stelleri	Whitespotted greenling	х	X	
Pleurogrammus monoptervgius	Atka mackerel	x	X	
noplopomatidae				
<u>Anoplopoma</u> <u>fimbria</u>	Sablefish	X	X	
bttidae				
Blepsias bilobus	Crested sculpin		X	
Cottidae sp.	Sculpin unid.	х	х	
Dasycottus setiger	Spinyhead sculpin	х		
Enophrys lucasi	Leister sculpin	х		
Gymnocanthus galeatus	Armorhead sculpin	X	x	
Gymnocanthus pistilliger ^d	Threaded sculpind	х		
Gymnocanthus tricuspis	Arctic staghorn sculpin	x		
Hemilepidotus hemilepidotus	Red Trish lord	x		
Hemilepidotus jordani	Vellow Trish lord	x	x	
Hemilepidotus spinosus	Brown Trish lord		x	
Homilopidotus spinosus	Longfin Trish lord		x	
Hemitripterug bolini	Bigmouth sculpin	x	x	
Teolug ap	Sculpin unid.	x		
Teelus sp.		Ŷ		
Teelus canariculatus	 Spatulate goulpin	~ ~	¥	
Teelus spatula	Merry coulpin	Y	x v	
Icelus spiniger	Thorny sculpin	A .	л V	
Leptocottus armatus	Pacific stagnorn sculpin	 v	л v	
Malacocottus Kincaldi	Blackfin sculpin	A V	A V	
Malacocottus zonurus	Darkiin scuipin-	Λ	л v	
Megalocottus platycephalus	Beiligerent sculpin		A V	
Melletes papillo	Butterily sculpin	· A V	л V	
Myoxocephalus sp.	Sculpin unid.	х 	л У	
Myoxocephalus jaok	Plain sculpin	X 	X	
Myoxocephalus	Great sculpin	X	х	
Myoxocephalus stelleri ^d	Frog sculpin ^f		x	
Myoxocephalus verrucosus ^d	Warty sculpin ^d	х	x	
Triglops sp.	Sculpin unid.	X		
Triglops forficata	Scissortail sculpin	x		
Triglops macellus	Roughspine sculpin		х	
Triglops pingeli	Ribbed sculpin	х		
Triglops scepticus	Spectacled sculpin	x		
Agonidae Agonopsis vulsa	Northern spearnose poacher	х		
Agonidae en.	Poacher unid-		¥	
Adonus acinenserious	Sturgeon macher	 Y	A Y	
Anoplagonus inermis	Smooth alligatorfish	x	~ ==	

Table 6. (Cont.)

		<u> </u>	ation
Family and species ^a	Common name ^a	U.S.	U.S.S.R.
Aspidophoroides bartoni	Aleutian alligatorfish	X	
Bathyagonus sp.	Poacher unid.	х	
Bathyagonus alascanus	Grav starsnout	X	
Ocella dodecaedron	Bering poacher	х	
Ocella verrucosa	Warty poacher	x	х
Pallasina barbato	Tubenose poacher		x
Sarritor frenatus	Sawback poacher	X	X
Cyclopteridae			
Careproctus sp.	Snailfish unid.	· X	
Careproctus melanurus	Blacktail snailfish		х
Careproctus phasmad			, X
Careproctus rastrinus ^d		х	
Careproctus scottaed		·· X ·	
Cyclopteridae sp.	Snailfish unid.	х	х
Eumicrotremus orbis	Pacific spiny lumpsucker	х	X
Liparis sp.	Snailfish unid.	Х	X -
Liparis bristolense			X
Liparis dennyi	Marbled snailfish		X
Liparis fucensis	Slipskin snailfish		х
Liparis pulchellus	Showy snailfish		X
Trichodontidae			
Trichodon trichodon	Pacific sandfish	Х	x
Bathymasteridae			
Bathymaster signatus	Searcher	x	× X
Anarhichadidae			
<u>Anarhichas</u> orientalis	Bering wolffish	х	X
Anarrhichthys ocellatus	Wolf-eel		X
Stichaeidae			
Lumpenella longirostris	Longsnout prickleback	X	X
Lumpenus maculatus	Daubed shanny	X	X
Lumpenus sagitta	Shake prickleback	X	X
Lumpenus fabricii	Slender eelblenny	X	
Poroclinus rothrocki	Whitebarred prickleback	х	.
Zaproridae			
Zaprora silenus	Prowfish	х	x
Ammodytidae	nalfla and le co	47	.,
Ammodytes nexapterus	FACIFIC SAND LANCE	X	X
Pleuronectidae	Vanabatha flamatar	v	_
Atheresthes evermanni	Namenatka Ilounder Arrowtooth flounder	л V	 v
Atherestnes Stomlas	AFFOWLOOTH ILOUNDER	х	A

Table 6 (Cont.)

		N	ation
Family and species ^a	Common name ^a	U.S.	U.S.S.R.
	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Glyptocephalus zachirus	Rex sole	x	x
Hippoglossoides elassodon	Flathead sole	X	х
Hippoglossoides robustus	Bering flounder	X	X
Hippoglossus stenolepis	Pacific halibut	х	х
Isopsetta isolepis	Butter sole	х	
Lepidopsetta bilineata	Rock sole	х	x
Limanda aspera	Yellowfin sole	х	х
Limanda proboscidea	Longhead dab	х	х
Platichthys stellatus	Starry flounder	х	х
Pleuronectidae sp.	Flatfish unid.	х	**
Pleuronectes	Alaska plaice	X	х
quadrituberculatus			
Psettichthys	Sand sole	х	
melanostictus		*	
Reinhardtius	Greenland turbot ^g	х	x
hippoglossoides			

- a Nomenclature from Robins (1980), unless noted.
- b Eschmeyer et al. (1983).
- c Shiino (1972).
- d Quast and Hall (1972).
- e Kessler (in press).
- f Ichthyological Society of Japan (1981).
- g Market name.

<u>elassodon</u>, and Bering flounder H. <u>robustus</u>, (often confused) were combined and treated as flathead sole. There is a similar problem with arrowtooth flounder, <u>Atheresthes stomias</u>, and Kamchatka flounder, A. <u>evermanni</u>. These have been combined and treated as arrowtooth flounder since a distinction was not made by the scientists aboard the Soviet vessel and the separation may have been inconsistent on the U.S. vessels.

CPUE Estimates

The top 10 species from the U.S. and U.S.S.R. surveys, in order of relative abundance, are included in Table 7. These species comprised 84% of the catch in the U.S. survey area, and 95% of the catch durin the U.S.S.R. survey. Eight of the ten top ranking species were the same in both surveys, but only the top three species appeared in the same order.

The most significant aspect of the rankings is that all of the mean CPUE values from the U.S. survey were greater than those from the Soviet survey, particularly in the case of the flatfish. Estimates from the U.S. survey exceeded those from the U.S.S.R. by 2 1/2 times for yellowfin sole, <u>Limanda aspera</u>, and Alaska plaice, <u>Pleuronectes quadrituberculatus</u>, and by 4 times for rock sole, Lepidopsetta bilineata, and flathead sole. Even though Pacific halibut, <u>Hippoglossus stenolepis</u>, and Pacific herring, <u>Clupea harengus pallasi</u>, appear in the U.S.S.R. survey list, but not in the U.S. summary, these species were actually more abundant in the U.S. survey results (Table 8).

Biomass Estimates

Biomass estimates for principal fish species from the U.S. and U.S.S.R. surveys are given in Table 9. Results from the two surveys were supportive in showing that walleye pollock, yellowfin sole, and Pacific

Nation and rank	Species	Mean CPUE kg/ha ^a	Proportion of total CPUE ^b	Cumulative proportion ^C
United St	tates			
1	Walleye pollock	129.17	0.364	0.364
2	Yellowfin sole	90.57	0.255	0.619
3	Pacific cod	24.55	0.069	0.688
4	Rock sole	21.23	0.060	0.748
5	Alaska plaice	14.17	0.040	0.788
6	Flathead sole	6.10	0.017	0.805
.7	Skates	3.65	0.010	0.815
8	Myoxocephalus sp.	3.35	0.009	0.825
9	Arrowtooth flounder	3.17	0.009	0.834
10	Eelpouts	2.27	0.006	0.840
U.S.S.R.				
1	Walleye pollock	90.19	0.547	0.547
2	Yellowfin sole	34.24	0.207	0.754
3	Pacific cod	16.23	0.098	0.852
4	Alaska plaice	5.92	0.036	0.888
5	Rock sole	4.97	0.009	0.918
6	Flathead sole	1.47	0.008	0.927
7	Pacific halibut	1.33	0.006	0.935
8	Pacific herring	0.96	0.006	0.941
9	Myoxocephalus sp.	0.94	0.006	0.947
10	Skates	0.86	0.005	0.952

Table 7.--Rank order of abundance of the ten most abundant species of fish taken during the 1983 U.S. and U.S.S.R. eastern Bering Sea surveys, all six subareas cabined.

^a Total effort: U.S. = 1376.1 ha, U.S.S.R. = 3110.0 ha.

b Proportion of total CPUE, fish only. Total CPUE:

U.S. = 354.94 kg/ha, U.S.S.R. = 165,01 kg/ha.

^C Rounding accounts for minor discrepancies between sum of proportions for individual species and cumulative proportions.

				U.S. s	survey			U.S.S.R. survey						
Species	1	2	3	4	6	7	Total	1	2	3	4	6	7	Total
Walleye pollock	131.5	195.2	99.8	69.5	63.9	228.2	129.2	49.4	169.5	146.3	30.2	24.2	171.7	90.2
Pacific cod	33.0	13.1	23.8	31.6	17.7	24.4	24.6	22.0	7.6	17.7	11.6	14.5	23.0	16.2
Sablefish		1.0				1.4	0.4		0.4				<0.1	0.1
Pacific herring	3.4	0.2	<0.1	2.2	0.1	4.4	1.9	0.6	0.9	<0.1	1.7	2.1	<0.1	1.0
Yellowfin sole	184.5	27.3	<0.1	107.8	164.6	5.9	90.6	59.3	4.4		34.1	85.7	0.5	34.2
Rock sole	73.7	8.1	0.1	9.2	19.1	8.3	21.2	18.9	1.0	0.1	1.1	5.3	1.3	5.0
Flathead sole	6.8	12.1	10.2	1.7	2.8	6.8	6.1	1.6	2.5	2.1	0.3	1.2	1.7	1.5
Alaska plaice	8.6	4.3	0.1	30.0	27.2	4.3	14.2	4.7	0.6	<0.1	11.9	12.7	0.9	5.9
Greenland turbot	<0.1	0.3	3.4	0.1	<0.1	1.5	0.7	<0.1	<0.1	1.1	0.1	<0.1	0.4	. 0.2
Arrowtooth flounder	0.7	11.9	2.3	0.2	0.6	5.6	3.2	0.3	1.8	0•4	0.1	0.2	0.8	0.5
Pacific halibut	4.3	3.3	0.2	1.7	1.5	1.8	2.2	3.2	1.4	0.1	0.6	1.0	1.3	1.3
Total trawls	58	43	28	68	57	56	310	59	42	32	68	57	57	315
Total species ^a	92	110	97	103	122	119	217	46	37	28	46	44	43	78
Total effort (ha).	263.2	184.6	123.5	303.8	254.9	245.9	1376.1	566•4	422.5	338.2	664.3	560.1	558.5	3110.0

Table 8. --Mean catch-per-unit effort (kg/ha) values for major species, by subarea, from 1983 U.S. and U.S.S.R. eastern Bering Sea surveys.

^a May be less than number of species encountered, due to rank grouping.

			95% Confi	dence						
Species	Nation	1	2	3	4	6	7	Total	interv	al
Walleye	U.S.	1,036,213	1,178,353	480,697	633,552	527,089	1,859,312	5,715,216	(4,717,717-	6,712,715)
pollock	0.3.3.8.	307,417	1,023,082	103,088	275,450	179,118	1,399,037	3, 991, 198	(3,1/0,00/-	4,805,790)
Pacific cod	U.S. U.S.S.R.	260,256 173,781	79,109 46,002	114,574 85,129	288,108 106,190	145,943 119,197	198,425 187,684	1,086,415 717,981	(849,749- (610,896-	1,323,082) 825,066)
Sablefish	U.S.		6,190				11.775	17,966	(0-	39,836)
· .	U.S.S.R.		2,436				245	2,680	(1,117-	4,244)
Pacific	U.S.	27,033	1,175	54	20,500	1, 193	35,860	85,814	(25,931-	145,697)
herring	U.S.S.R.	4,564	5,503	1	15,206	17,207	119	42,600	(13,571-	71,631)
Yellowfin	U.S.	1,454,630	164,482	39	983,489	1,356,683	47,991	4,007,315	(3,512,516-	4,502,114)
sole ^a	U.S.S.R.	467,065	26,377		310,956	706,474	4,215	1,515,087	(1,290,181-	1,739,356)
Rock sole ^a	U.S.	581,305	48,858	349	83,721	157,326	67,827	939,386	(729,678-	1,149,094)
	U.S.S.R.	148,656	5,950	374	10,272	44,012	10,499	219,764	(159,051-	280,477)
Flathead	U.S.	53,245	73,085	49,236	15,539	23,301	55,522	269,927	(204,775-	335,079)
sole	U.S.S.R.	12,951	15,389	10,072	2,463	9,925	14,109	64,910	(51,159-	78,662)
Alaska	v.s.	68,064	25,732	278	273,393	224,530	35,020	627,016	(515,366-	738,667)
plaice ^a	U.S.S.R.	36,862	3,856	31	108,285	104,987	7,737	261,759	(210,234-	322,283)
Greenland	U.S.	13	1,985	16,471	1,099	211	12, 199	31,980	(24,249-	39,711)
turbot ^a	U.S.S.R.	23	160	5,456	535	11	3,545	9,730	(7,361-	12,099)
Arrowtooth	v.s.	5,513	71,672	11,014	2, 163	4,590	45,363	140,316	(118,689-	161,943)
flounder ^a	U.S.S.R.	2,539	10,781	1,774	546	1,593	6,293	23,527	(19,582-	27,471)
Pacific	U.S.	33,956	20,164	1,196	15,211	12,720	14,497	97,748	(74,100-	121,396)
halibut ^a	U.S.S.R.	25,082	8,359	3 19	5,550	8,624	10,940	58,874	(45,026-	72,721)
Other fish	U.S.	69,109	116,408	61,430	170,041	89 , 756	107,633	614,377	(52,340-	705,353)
	U.S.S.R.	34,638	31,359	5,095	37,099	28,488	26,726	163,404	(12,709-	199,719)
Total (all	V.S.	3,958,454	2,004,429	871,929	2,944,535	2,976,195	2,948,855	15,704,407	(14,488,836-	16,919,978)
species)	U.S.S.R.	1,447,644	1,179,860	814,587	893,492	1,283,717	1,283,717	7,301,722	(6,420,993-	8,182,451)

Table 9Estimated biomass	(metric tons) of	major species,	by subarea,	from the 198	3 U.S.	and
U.S.S.R. eastern B	ering Sea surveys					

a U.S. values standardized to research vessel Alaska.

cod were the most abundant species in the survey area. However/in almost all cases, the 95% confidence intervals showed that the U.S. and U.S.S.R. biomass estimates were significantly different. There was an overlap in the confidence intervals **only** for walleye pollock and sablefish, <u>Anoplopoma fimbria</u>, indicating that the two estimates were not significantly different. For all major species, U.S. biomass estimates ranged from approximately 1.5 to 6.7 times larger than corresponding U.S.S.R. biomass estimates, and as noted with CPUE estimates, differences were particularly large for the flatfishes.

Table 10 shows the distribution of biomass estimates, by subarea, for the two surveys. Five of the eleven major species were concentrated on the outer shelf: walleye pollock; sablefish; flathead sole; Greenland turbot, Reinhardtius hippoglossoides; and arrowtooth flounder. The species showing strong affinity for inner shelf waters were yellowfin sole, Alaska plaice, rock sole, and to a lesser degree, Pacific cod and Pacific halibut. For these species, with the exception of sablefish, the biomass distributions among regions and subareas were similar for the U.S. and U.S.S.R. surveys. Roth surveys showed that the distribution of sablefish was limited to the outer shelf but the subarea showing the highest abundance differed between the surveys. Pacific herring was the one species which showed markedly different biomass distributions. The U.S. survey data showed a more even distribution of herring between the inner and outer shelf regions, while the U.S.S.R. data showed a high percentage of biomass (87%) in the inner shelf region. The assumption is that the semipelagic nature of Pacific herring makes it more vulnerable to the higher opening U.S.S.R. trawl, yielding more accurate distribution information. However, the overall biomass estimate from the U.S. survey

	Subarea									
			uter she	lf	Inner shelf					
Species	Nation	3	7	2	4	6	1			
Walleye pollock	U•S•	8.4	32.5	20.6	11.1	9.2	18.			
	U.S.S.R.	17.7	35.1	25.6	6.9	5.0	9.1			
Pacific cod	U.S.	10.5	18.3	7.3	26.5	13.4	24.			
	U•S•S•R•	11.9	26.1	6.4	14.8	16.6	24•2			
Sablefish	U.S.		65.5	34.5						
	U.S.S.R.		9.1	90.9						
Pacific herring	U.S.	<0.1	41.8	1.4	23.9	1.4	31.			
	U.S.S.R.	<0.1	0.3	12.9	35.7	40-4	10.			
Yellowfin sole	U.S.	<0.1	1.2	4.1	24.5	.33.9	36.3			
	U.S.S.R.		0.3	1.7	20.5	46.6	30.8			
Rock sole	U.S.	<0.1	7.2	5.2	8.9	16.7	61.9			
· · ·	U.S.S.R.	0.2	4.8	2.7	4.7	20.0	67.0			
Flathead sole	U.S.	18.2	20.6	27.1	5.8	8.6	19.			
	U.S.S.R.	15.5	21.7	23.7	3.8	15.3	20.0			
Alaska plaice	U.S.	<0.1	5.6	4.1	43.6	35.8	10.9			
	U.S.S.R.	<0.1	3.0	1.5	41.4	40.1	14.			
Greenland turbot	U.S.	51.5	38.1	6.2	3.4	0.7	<0.			
	U.S.S.R.	56.1	36•4	1.6	5.5	0.1	0.2			
Arrowtooth flounder	U.S.	7.8	32.3	51.1	1.5	3.3	3.9			
	U.S.S.R.	7.5	26.7	45.8	2.3	6.8	10.8			
Pacific halibut	U.S.	1.2	14.8	20.6	15.6	13.0	34.3			
	U.S.S.R.	0.5	18.6	14.2	9.4	14.6	42.0			

Table 10.--Percent of estimated biomass (metric tons) of major species, by subarea, from the 1983 U.S. and U.S.S.R. eastern Bering Sea survey.

was approximately twice that from the U.S.S.R. survey. These results are difficult to explain; the differences may arise from the schooling behavior and patchy distribution of herring rather than gear variations.

Population estimates for the major species are summarized in Table 11. Again, the U.S. estimates are greater than the U.S.S.R. values except for walleye pollock. As will be shown later, by length frequency data, the reason for this is that the U.S.S.R. vessels sampled greater numbers of small (10-20 cm) pollock than the U.S. vessels.

Size Composition

Eight species of fish had length data collected on both the U.S. and U.S.S.R. vessels. Sablefish, Greenland turbot, and arrowtooth flounder were measured only on the U.S. vessels and therefore are not included here. Figures 7-14 compare population estimates, by length, from the two The smaller Soviet population estimates are reflected in these surveys. The mean lengths from the Soviet catches were larger than those figures. from the U.S. survey, with the exception of walleye pollock (Fig. 7) and Pacific herring (Fig. 9). The smaller mean length of pollock from the U.S.S.R. survey resulted from a higher proportion of 10-35 cm fish in their catches than from U.S. survey catches. In the case of Pacific herring, U.S. vessels took a higher proportion of larger fish. For the remaining species, higher mean lengths from the U.S.S.R. survey resulted from a lower proportion of juvenile fish, <20 cm, in the catches.

DISCUSSION

The 1983 survey was the second year of joint Bering Sea fisheries research with the Soviet Union, and the first year that vessels from the two nations sampled the same survey area in the eastern Berin Sea. The

		95% Confid	ience							
Species	Nation	1	2	3	4	6	7	Total	interva	1
Walleye pollock	U.S.	1,498.2	1,927.2	1,735.6	2,727.1	1,018.4	5,052.3	13,958.7	(11,777,1-1	6,140,3)
	U.S.S.R.	1,157.8	1,777.9	3,013.7	2,391.7	1,091.9	4,715.5	14,148.4	(10,701.1-1	7,595.8)
Pacific cod	U.S.	180.8	29.1	34.2	276.0	77.4	73.0	670.5	(515.1-	825.9)
	U.S.S.R.	96.9	15.3	26.3	53.6	48.5	75.0	315.7	(263.0-	368.5)
Sablefish	U.S.		5.6				3.6	9.1	(2.0-	161.2)
	U.S.S.R.		2.0				0.2	2.2	(0.9-	3.6)
Pacific herring	U.S.	126.2	5.6	0.2	116.6	7.5	185.7	441.7	(134.1-	749.4)
	U.S.S.R.	44.4	20.6	<0.1	109.4	98.9	0.5	273.9	(99.0-	448.8)
Yellowfin sole ^a	U.S.	7,139.1	661.9	0.2	4,241.9	7,078.3	171.1	19,292.5	(16,705.4-2	1,879.4)
	U.S.S.R.	2,116.9	78.9		1,178.9	3,143.9	11.2	6,529.8	(5,477.9-	7,581.7)
Rock sole ^a	U.S.	3,038.7	197.9	0.8	628.1	877.5	199.4	4,942.3	(3,926.5-	5,958.2)
	U.S.S.R.	576.9	24.2	0.6	27.6	161.0	29.0	819.2	(614.1-	1,024.4)
Flathead sole	U.S.	243.8	447.7	189.6	138.5	168.0	285.4	1,473.1	(1,252.5-	1,693.7)
	U.S.S.R.	49.3	66.2	32.7	8.2	44.4	42.0	242.7	(194.5-	291.0)
Alaska plaice ^a	U.S.	135.6	47.9	0.3	548.6	455.5	42.4	1,230.2	(1,018-4-	1,442.0)
	U.S.S.R.	61.3	4.3	<0.1	186.6	195.9	8.5	456.6	(355.0-	558.1)
Greenland turbot ^a	U.S.	<0.1	0.5	34.1	3.1	0.3	20.6	58.6	(43.6-	73.6)
	U.S.S.R.	<0.1	<0.1	8.9	0.7	<0.1	4.6	14.3	(10.9-	17.7)
Arrowtooth	U.S.	19.7	314.1	18.6	13.9	32.0	193.3	591.6	(490.0-	693.3)
flounder ^a	U.S.S.R.	7.8	27.6	2.6	1.3	3.6	16.7	59.6	(48.6-	70.5)
Pacific halibut ^a	U.S.	17.1	5.6	0.4	10.9	5.2	9.5	48.7	(34.6-	62.9)
	U.S.S.R.	8.9	2.3	0.1	2.5	3.2	6.8	23.7	(14.1-	33.4)

Table 11. --Population estimates for major species, by subarea, from 1983 U.S. and U.S.S.R. eastern Bering Sea surveys (in millions of fish).

a U.S. values standardized to research vessel <u>Alaska</u>.

<u>з</u>о

.

Figure 7. --Length composition of walleye pollock sampled by U.S. and U.S.S.R. research vessels during the **1983** eastern Bering Sea surveys.

Figure 8. --Length composition of Pacific cod sampled by U.S. and U.S.S.R. research vessels during the 1983 eastern Bering Sea surveys.

Figure 9. --Length composition of Pacific herring sampled by U.S. and U.S.S.R. research vessels during the **1983** eastern Bering Sea surveys.

Figure 10.--Length composition of yellowfin sole sampled by U.S. and U.S.S.R. research vessels during the 1983 eastern Bering Sea surveys.

Figure 11 .--Length composition of rock sole sampled by U.S. and U.S.S.R. research vessels during the 1983 eastern Bering Sea surveys.

Figure 12. --Length composition of flathead sole sampled by U.S. and U.S.S.R. research vessels during the 1983 eastern Bering Sea surveys.

Figure 13. --Length composition of Alaska plaice sampled by U.S. and U.S.S.R. research vessels during the 1983 eastern Bering Sea surveys.

Figure 14. --Length composition of Pacific halibut sampled by U.S. and U.S.S.R. research vessels during the 1983 eastern Bering Sea surveys.

focus of this report was to determine if the combined survey information afforded better groundfish assessment of this region.

Survey design was fairly straightforward, following a long established U.S. grid pattern. Vessel size and gear differences were the most dissimilar survey characteristics although variations in methods of processing catches may be an important factor. The U.S.S.R. vessel was 2-2.5 times larger than the U.S. vessels and generated 2-4 times the horsepower. However; U.S.S.R. abundance estimates were much lower than those from the United States, indicating that trawls and trawl rigging were the primary factors *that may have accounted for the differences between U.S. and U.S.S.R. estimates. During the Soviet survey, roller gear was used but the incidences were not documented, most likely due to poor observer training. Records show that the use of roller gear results in lower catch rates for bottom tending species such as flatfish and a generally lower proportion of small fish, when compared to catches from trawls without roller gear (Wakabayashi et al. 1985). The assumption is that the trawl passes over many bottom dwelling fish while others may have the ability to swim under the footropes, thus avoiding the trawl. In the case of walleye pollock, Traynor and Nelson (1985) found that a high proportion of smaller individuals occupy midwater layers. This accounts for the higher proportion of 10-35 cm pollock in the U.S.S.R. data, collected with a higher opening trawl (6.0 m).

Sampling procedures can also cause variations in biomass and population estimates. The U.S.S.R. vessel often handled large catches which necessitated alteration of the sampling procedures. Some U.S.S.R. catch weights were based on visual estimates or extrapolation from factory weights, while U.S. catches and subsamples were weighed in a consistent manner.

From the examination of the two data bases, it is concluded that differences preclude combining the results for a more comprehensive assessment of eastern Bering Sea groundfish in 1983. Fishing power coefficients could be developed to account for differences in catch rates for individual species, but these would not be valid unless they were derived by taking into account the use of roller gear on the Soviet trawl. To produce meaningful results from joint U.S.-U.S.S.R. surveys, standardized methods of sampling, processing catches and collecting biological data should be followed. Also, comparative trawl efforts should be organized to develop relative fishing-power estimates.

REFERENCES

- Alverson, D. L., and W. T. Pereyra. 1969. Demersal fish explorations in the northeastern Pacific Ocean--an evaluation of exploratory fishing methodsand analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.
- Bakkala, R. G., and G. B. Smith. 1978. Demersal fish resources of the eastern Bering Sea; spring 1976. Processed Rep., 234 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.
- Eschmeyer, W. N., E. S. Herald, and H. Hammann. 1983. A field guide to Pacific coast fishes of North America. Houghton Mifflin Co., Boston, 336 p.
- Geisser, S., and W. F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74(365):153-160.
- Hirschberger, W. A. In press. Data report: 1983 bottom trawl survey of the eastern Bering Sea continental shelf. U.S. Dep. Commer., NOAA Tech. Memo.
- Hughes, S. E. 1976. System for sampling large trawl catches of research vessels. J. Fish. Res. Board Can. 33:833-839.
- Ichthyological Society of Japan. 1981. Dictionary of Japanese fish names and their foreign equivalents. Sanseido Co., Tokyo, Jpn., 834 p.
- Kessler, D. W. In press. Alaska's saltwater fishes and other sealife. Vol. 1., Alaska Northwest Pub., Anchorage, AK.
- Quast, J. C., and E. L. Hall. 1972. List of fishes of Alaska and adjacent waters with guide to some of their literature. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-658, 47 p.
- Robins, C. R. (chairman). 1980. A list of common and scientific names of fishes from the United States and Canada. Am. Fish. Soc., Spec. Pub. No. 12, 174 p.
- Shiino, S. M. 1972. List of English names of Japanese fishes with a proposition of w names. Sci. Rep. Shima Marineland, No. 1, 210 p.
- Smith, G. B., and R. G. Bakkala. 1982. Demersal fish resources of the eastern Bering Sea: spring 1976. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-754, 129 p.
- Traynor, J. J., and M. O. Nelson. 1985. Results of the U.S. hydroacoustic survey of pollock on the continental shelf and slope. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 192-199. Int. North Pac. Fish. Comm., Bull. 44.
- Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1985. Methods of the U.S.-Japan emersal trawl surveys. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 7-29. Int. North Pac. Fish. Comm., Bull. 44.